top of page
Publication

Sá-Leitão et al. (2024). Amazon tropical fishes of commercial interest show human-cell contamination but no SARS-CoV-2 in a real-life scenario. PLoS One. 19: e0306985.
doi: 10.1371/journal.pone.0306985

​

Santos et al. (2023). Vitellogenin Ab structure of the Amazonian Arapaima gigas. General and Comparative Endocrinology. 330: 114143.
doi: 10.1016/j.ygcen.2022.114143

​

Batista et al. (2022). Addressing amazonian fish diversity using environmental DNA (eDNA): A first glance. European Journal of Aquatic Sciences. 1: 9-17.

doi: 10.24018/ejaqua.2022.1.1.4

​

Santos et al. (2021). Insight to new genes with sex-biased to bony-tongued fishes: Differentially expressed genes in adult individuals of revealed by RNA-Seq. Aquaculture Research. 52: 15437.doi: 10.1111/are.15437

​

Sá-Leitão et al. (2021). River reorganization affects populations of dwarf cichlid species (Apistogramma genus) in the Lower Negro River, Brazil. Frontiers in Ecology and Evolution. 9: 760287.
doi: 10.3389/fevo.2021.760287

​

Fé-Gonçalves et al. (2020a). How will farmed populations of freshwater fish deal with the extreme climate scenario in 2100? Transcriptional responses of Colossoma macropomum from two Brazilian climate regions. Journal of Thermal Biology. 89: 102487.
doi: 10.1016/j.jtherbio.2019.102487

​

Fé-Gonçalves et al. (2020b). Transcriptomic evidences of local thermal adaptation for the native fish Colossoma macropomum (Cuvier, 1818). Genetics and Molecular Biology. 43: e20190377.
doi: 10.1590/1678-4685-GMB-2019-0377

​​

Santos CHA. (2020). Fish biodiversity: Brief perspective to the use of the environmental DNA in Brazilian Amazon. Journal of Ecology and Natural Resources. 4: 000191.doi: 10.23880/jenr-16000191

​

Santos CHA. (2019). Environmental DNA: A new method to explore the ichthyological biodiversity of the Amazon Basin. Journal of Ecology & Natural Resources. 3: 000164.
doi: 10.23880/jenr-16000164

​

Gonçalves et al. (2019). Genetic basis of Colossoma macropomum broodstock: Perspectives for an improvement program. Journal of the World Aquaculture Society. 50: 633-644. doi: 10.1111/jwas.12564

​​

Sá-Leitão et al. (2017). Development and characterization of microsatellite loci in Amazonian dwarf cichlids Apistogramma spp. (Perciformes: Cichlidae): Uncovering geological influence on Amazonian fish population. Journal of Applied Ichthyology. 33: 1196-1199.

doi: 10.1111/jai.13490

​​

Santos et al. (2016a). Loss of genetic diversity in farmed populations of Colossoma macropomum estimated by microsatellites. Animal Genetics. 47: 373-376.

doi: 10.1111/age.12422

​

Santos et al. (2016b). Genetic differentiation in red-bellied piranha populations (Pygocentrus nattereri, Kner, 1858) from the Solimoes-Amazonas River. Ecology and Evolution. 6: 4203-4213.

doi: 10.1002/ece3.2195

​

Santos et al. (2014). Genetic relationships between captive and wild subpopulations of Arapaima gigas (Schinz, in Cuvier, 1822). Internation Journal of Fisheries and Aquaculture. 6: 108-123.

doi: 10.5897/IJFA14.0415

 

Aksoy et al. (2013). Permanent Genetic Resources Note. Permanent Genetic Resources added to Molecular Ecology Resources Database 1 October 2012–30 November 2012. Molecular Ecology Resources. 13: 341-343. 

doi: 10.1111/1755-0998.12061 

 

Santos et al. (2012). Genetic variability of wild and captivity populations of Colossoma macropomum (Cuvier, 1818). Acta Scientiarum. Biological Sciences. 34: 191-197. 

doi: 10.4025/actascibiolsci.v34i2.7149

​

Santos et al. (2012). Genetic diversity in Cichla monoculus (Spix and Agassiz, 1931) populations: implications for management and conservation. American Journal of Environmental Sciences. 8: 35-41.

doi: 10.3844/ajessp.2012.35.41

Santana et al. (2012). Isolation of novel microsatellite markers for tambaqui (Colossoma macropomum, Cuvier 1818), an important freshwater fish of the Amazon. Conservation Genetics Resources. 4: 197-200.

doi: 10.1007/s12686-011-9507-3

​

Pereira et al. (2012). Isolation of microsatellite loci in the Amazon sailfin catfish Pterygoplichlhys pardalis (Castelneau, 1855) (Teleostei: Loricariidae). Conservation Genetics Resources. 4: 889-891.

doi: 10.1007/s12686-011-9507-3

​

Santos et al. (2011). Permanent Genetic Resources Note. Permanent Genetic Resources added to Molecular Ecology Resources Database 1 December 2010–31 January 2011. Molecular Ecology Resources. 11: 586-589.

doi: 10.1111/j.1755-0998.2011.03004.x

​

Nascimento et al. (2011). Isolation and development microsatellite markers in the Pygocentrus nattereri (Kner, 1858) (Characiformes, Serrasalminae), an important freshwater fish in the Amazon. Conservation Genetics Resources. 4: 271-274.

doi: 10.1007/s12686-011-9522-4

​

Santos et al. (2010). Desenvolvimento de juvenis recentes da Panulirus laevicauda, alimentadas com moluscos e dieta peletizada. Ciência Animal Brasileira. 11: 1-8.

doi: 10.5216/cab.v1lil.1105

​

Santos et al. (2009). Crescimento e sobrevivência do camarão-branco do pacifíco Litopenaeus vannamei (Boone, 1931) em diferentes salinidades. Ciência Animal Brasileira. 10: 783-789.

 

Lourenço et al. (2009). Influência de diferentes dietas no desenvolvimento do camarão Litopenaeus vannamei (Boone, 1931) em berçários intensivos. Acta Scientiarum. Biological Sciences. 31: 1-7.

doi: 10.4025/actascibiolsci.v31i1.454 

​

Sousa et al. (2009). Development and characterization of microsatellite markers in Astronotus crassipinis (Heckel, 1840). Conservation Genetics Resources. 1: 277-280. 

doi: 10.1007/s12686-009-9068-x

​

Lourenço et al. (2008a). Desenvolvimento tecnológico do cultivo de lagostas espinhosas. Revista Brasileira de Agrociência. 14: 11-18.

​

Lourenço et al. (2008b). Desenvolvimento de juvenis recentes da lagosta espinhosa Panulirus argus (Latreille, 1804) em diferentes temperaturas. Bioscience Journal. 24: 94-99.

​

Santos et al. (2007a). Avaliação do ganho de peso de pós-larvas do camarão marinho Litopenaeus vannamei (Boone, 1931), alimentados com peixes da fauna acompanhante do camarão marinho. Ciência Animal Brasileira. 8: 7-15.

 

Santos et al. (2007b). Crescimento de tilápia do Nilo alimentados com peixes marinhos provenientes da pesca do camarão. Ciência Animal Brasileira. 8: 185-192.

 

Neves et al. (2007). Reutilização da água em sistema de recirculação na fase de berçário para adaptação do camarão branco do Pacífico Litopenaeus vannamei (Boone, 1931) à água doce. Revista Brasileira de Agrociência. 13: 547-550.

 

Candido et al. (2006). Policultivo do camarão marinho (Litopenaeus vannamei) com a tilápia do Nilo (Oreochromis niloticus). Arquivos de Ciências Veterinárias e Zoologia da Unipar. 9: 9-14.

 

Santos et al. (2002). Cultivo em agua doce do camarao marinho Litopenaeus vannamei (Boone, 1931), alimentados com diferentes dietas naturais. Revista Ciência Agronômica. 33: 58-63.

​

Santos et al. (2000). Cultivo da tilápia vermelha híbrido de Oreochromis em água do mar. Revista Científica de Produção Animal. 2: 141-151.

bottom of page